## Hydrogen-Bonding Surfaces for Ice Mitigation: The Effect of Surface Chemical Functionality Upon Ice Adhesion

Joseph Smith <sup>1</sup>, Christopher Wohl <sup>1</sup>, Jereme Doss<sup>2</sup>, Destiny Spence<sup>3</sup>, Richard Kreeger<sup>4</sup>, Jose Palacios<sup>5</sup>, Taylor Knuth<sup>5</sup>, Kevin Hadley<sup>6</sup>, and Nicholas McDougal<sup>6</sup>

<sup>1</sup>NASA Langley Research Center, Hampton, VA 23681, USA
<sup>2</sup>National Institute of Aerospace, Hampton, VA 23666, USA
<sup>3</sup>NASA USRP Researcher, NASA Langley Research Center, Hampton, VA 23681, USA
<sup>4</sup> NASA Glenn Research Center, Cleveland, OH 44135, USA
<sup>5</sup>The Pennsylvania State University, University Park, PA 16802, USA
<sup>6</sup>South Dakota School of Mines and Technology, Rapid City, SD 57701, USA



### Background

- \* Icing
  - \* Ground problem during cold months
    - Freezing drizzle/rain
  - In-flight problem year round
    - Results from super-cooled water droplets impacting the aircraft surface while flying through a cloud
    - Most occurrences are between 0 and -20°C
- \* Icing types encountered in-flight
  - Glaze/Clear, Rime, Mixed
  - Dependent upon
    - Air temperature (0 to -20°C)
    - Liquid water content (0.3-0.6 g/m<sup>3</sup>)
    - Droplet size (median volumetric diameter of 15-40 μm)

M.K. Politovich, "Aircraft Icing" in Encyclopedia of Atmospheric Sciences, Academic Press, Oxford, 2003, 68-75. H.E Addy Jr., M.G. Potapczuk, and D.W. Sheldon, "Modern Airfoil Ice Accretions," NASA TM 107423, 1997.





Glaze/Clear

- Large droplets
- Clear, nearly transparent, smooth, waxy thus hard to see
- Gradual freezing after droplet impact can result in runback along surface generating raised edges (i.e. horns)
- Difficult to remove

### Background



Rime

- Small droplets
- Brittle and opaque, milky appearance
- Rapid freezing after droplet impact with growth into the airstream
- Easier to remove than glaze



Mixed

- Variable droplet size
- Combination of glaze and rime ice

M.K. Politovich, "Aircraft Icing" in Encyclopedia of Atmospheric Sciences, Academic Press, Oxford, 2003, 68-75. H.E Addy Jr., M.G. Potapczuk, and D.W. Sheldon, "Modern Airfoil Ice Accretions," NASA TM 107423, 1997.



### Background

- \* Current alleviation strategies
  - Pneumatic boots
  - Heated surfaces
  - \* De-icing fluids (i.e., ethylene- and propylene-based glycols)
- \* A passive approach mitigating ice adhesion during the entire aircraft flight profile is desirable.
  - Superhydrophobic surfaces<sup>1</sup>
  - Surfaces containing anti-freeze proteins<sup>2</sup>
  - \* Slippery liquid-infused porous surfaces<sup>3</sup>
  - \* Aqueous lubricating layer<sup>4</sup>
- 1. S.A. Kulinich et. al., *Langmuir*, 27 (2011) 25-29.
- 2. Anitei, S. Fish 'Antifreeze' Against Icy Aeroplanes. Aug. 8, 2007;

http://news.softpedia.com/news/Fish-Antifreeze-Against-Icy-Aeroplanes-62189.shtml

- 3. L. Mishchenko, et. al.,"Design of Ice-free Nanostructured Surfaces Based on Repulsion of Impacting Water Droplets," ACS Nano, 4 (2010) 7699-7707.
- 4. R. Dou et.al., "Anti-icing Coating with an Aqueous Lubricating Layer," ACS Appl. Mater. Interfaces (2014).



### Objective

To assess the effect of surface chemical functionalization upon ice adhesion shear strength (IASS).

### Approach

Investigate coated surfaces having controlled chemical functionality and carbon chain length between the substrate surface and the chemical functionality.

- \* Prepare and characterize substituted alkyldimethylalkoxysilanes containing Hydrogen Bonding (HB) and non-HB groups.
  - \* ATR-FTIR, NMR (<sup>1</sup>H, <sup>13</sup>C, <sup>29</sup>Si)
- \* Prepare and characterize aluminum (Al) substrates coated with pure and mixtures of alkyldimethylalkoxysilanes containing HB and non-HB groups.
  - Contact Angle Goniometry
- Determine IASS of coated Al substrates in a simulated environment with comparison to uncoated Al.
  - \* Adverse Environment Rotor Test Stand



### Substituted Dimethylalkoxysilanes

$$CH_3$$
  
 $H_3CH_2C$  —  $O$  —  $Si$  —  $CH_2$  —  $CH_3$  • Non-hydrogen bonding  
 $CH_3$  • Aliphatic  
 $CH_3$  •  $X = 2$  (C3A), 6 (C7A), 10 (C11A)

$$- \frac{\text{CH}_3}{\text{CH}_3} \times \text{Hydrogen-boliding (dollor/acceptor)}$$

$$\times \text{Hydroxyl}$$

$$X = -, y = 7 \text{ (C7H), 10 (C10H), 11 (C11H)}$$

$$\times \text{EG}$$

$$\begin{array}{c} \text{CH}_{3} \\ \text{H}_{3}\text{CH}_{2}\text{C} - \text{O} - \overset{|}{\text{Si}} \xrightarrow{\text{CH}_{2}} \overset{|}{\text{CH}_{2}} \overset{|}{\text{y}} - \text{OR} \\ \text{CH}_{3} \end{array}$$
• Hydrogen-bonding (acceptor)
• C5MEG
$$R = -\text{CH}_{2}\text{CH}_{2}\text{OCH}_{3}, \ y = 5$$

- Hydrogen-bonding (donor/acceptor)

  - $X = -OCH_2CH_2-, y = 2$  (EG)



### Coating Al Substrate I

$$H_{3}CH_{2}C - O - Si - (CH_{2})_{X} - CH_{3} \qquad HOAc, EtOH, H_{2}O \\ CH_{2}Cl_{2}, RT \qquad HO - Si - (CH_{2})_{X} - CH_{3}$$

$$AI - OH + HO - Si - (CH_{2})_{X} - CH_{3} \qquad AI - O - Si - (CH_{2})_{X} - CH_{3}$$

$$CH_{3} - CH_{3} - CH_{$$

Non-hydrogen bonding

Aliphatic

$$x = 2 (C3A), 6 (C7A), 10 (C11A)$$

Same method for Hydrogen-bonding (acceptor)

$$R = -CH_2CH_2OCH_3, \ y = 5$$

$$CH_3$$
 $H_3CH_2C$ 
 $O$ 
 $Si$ 
 $CH_2$ 
 $Y$ 
 $CH_3$ 
 $CH_3$ 



### Coating Al Substrate II

$$\begin{array}{c|c}
\hline
 & CH_3 \\
\hline
 & O - Si - (CH_2)_y X
\end{array}
\qquad
\begin{array}{c}
\hline
 & HOAc, EtOH, H_2O \\
\hline
 & CH_2Cl_2, RT
\end{array}
\qquad
\begin{array}{c}
\hline
 & HO - Si - (CH_2)_y X - OH \\
\hline
 & CH_3
\end{array}$$

Hydrogen-bonding (donor/acceptor)

• Hydroxyl 
$$X = -$$
,  $y = 7$  (C7H), 10 (C10H), 11 (C11H)

• EG 
$$X = -OCH_2CH_2-, y = 2 (EG)$$



### Receding Water Contact Angle





### Adverse Environment Rotor Test Stand

- \* Pennsylvania State University
- \* Testing performed under simulated icing conditions.
  - \* Super-cooled water injected into test chamber.
  - \* Tests conducted from -8 to -16°C; commenced at -16°C
  - \* Icing cloud density (i.e. liquid water content) of 1.9 g/m<sup>3</sup>
  - Water droplet mean volumetric diameter of
     20 µm



- \* Ice accumulation and subsequent shedding enabled determination of Ice Adhesion Shear Strength after data analysis and visual assessment.
- \*Experimental details discussed in J. Soltis, J. Palacious T. Eden, and D. Wolfe, "Evaluation of Ice Adhesion Strength on Erosion Resistant Materials," 54th AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 8-11, 2013, Boston, MA, AIAA 2013-1509.



## One Component Coatings



### Non-HB: Chain Length Effect





### HB (donor/acceptor): Chain Length Effect





### HB (acceptor)





### Functional Group and Chain Length





### Functional Group: Similar Chain Length





### One Component Coating Summary



#### \* Aliphatic (non-HB)

- \* Minimum chain length (C7A) needed to decrease interaction of ice with the substrate (C3A)
- \* Long chain length (C11A) resulted in coating degradation
- Performance compared to HB series dependent on chain length

Al 
$$CH_3$$
  $CH_3$   $CH_2$   $X$ —OH  $CH_3$   $X = --$ ,  $y = 7$  (C7H), 10 (C10H), 11 (C11H)

•  $X = -OCH_2CH_2$ -, y = 2 (EG)

# Hydroxy1 and EG (HB donor/acceptor)

- \* Not much difference in IASS between test temperatures
- \* Long chain (C10H, C11H) performed better
- \* EG performance similar to C7H

# Al $CH_3$ $CH_3$ $CH_2$ $CH_2$ $CH_2$ $CH_3$ $CH_3$ $CH_3$ $CH_3$

\* C5MEG (HB acceptor)

- \* Functional group performance similar to C7A
- \* Comparable chain length performance
  - HB donor/acceptor (C10H, C11H) resulted in lower IASS
  - C11A (non-HB) degraded
- \* In general, performed better than EG



## Two Component Coatings



### Non-HB: Different Chain Lengths





### Increasing HB Content: Different Chain Lengths





### Increasing HB Content: Similar Chain Lengths





### Increasing HB Content: Different Chain Lengths





### Increasing HB Content: Different Chain Lengths





# Increasing HB (acceptor) Content: Different Chain Lengths





# Increasing HB (acceptor) Content: Different Chain Lengths





# Increasing HB (acceptor) Content: Different Chain Lengths





### Two Component Coating Summary

CH<sub>3</sub>

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$0 \quad x = 2 \text{ (C3A), 6 (C7A)}$$

\* IASS increased with increasing short chain (C3A) component.

- x = 2 (C3A), 6 (C7A)
- X = --, y = 7 (C7H), 10 (C10H) •  $X = -OCH_2CH_2$ -, y = 2 (EG)

- HB (donor/acceptor) and Aliphatic (non-HB)
  - General Increasing HB component (Hydroxyl) increased **IASS** 
    - Exception -16°C where IASS comparable
    - C7A/C10H suggested degradation, base components exhibited no degradation
  - EG/C3A
    - 25% EG inclusion exhibited comparable performance to C3A
    - 50% EG inclusion
      - Better performance than C3A at -8 and -12°C
      - Worse performance at -16°C



### Two Component Coating Summary

Al
$$CH_{3}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{3}$$

$$CSMEG$$

$$CH_{3}$$

- \* HB (acceptor) and Aliphatic (non-HB)
  - \* Performance dependent upon non-HB chain length
    - C3A afforded lower IASS compared to C7A
      - Presumably due to better accessibility of in-chain ether group to water
    - C5MEG/C3A overall performance better than EG/3A 50/50

Al
$$CH_{3}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{3}$$

$$CSMEG$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{3}$$

- \* HB (acceptor) and HB (acceptor/donor)
  - In general performance not as good as HB (acceptor) alone
  - Data suggested coating degradation



### Receding Water Contact Angle





### Conclusions

- \* Effect of coating composition on IASS is complex
  - One component coatings
    - Chain length effect upon IASS is functional group dependent
    - No clear trend observed between functional groups
  - \* Two component coatings
    - More relevant when incorporating functionalities into polymeric systems
    - General increasing HB content (HB donor/acceptor) increased
       IASS
    - Mixed chain length effect upon IASS is composition/functional group dependent



### Future Work

- Develop monomers with pendant groups based on non-HB and HB (acceptor) effects
- \* Prepare epoxies based on the developed monomers
- \* Test epoxy coated Al samples in AERTS to determine IASS

### Acknowledgements

- \* Ronald Penner (Science Technology Corporation)
- Dennis Working (NASA)